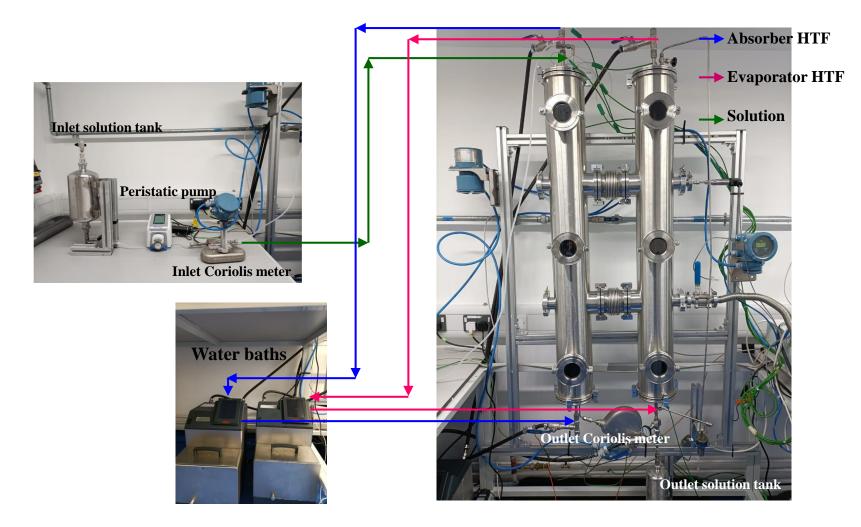

Absorption studies of sodium hydroxide solution on finned heat exchanger

Sai Yagnamurthy

HP-FITS

Absorption based thermal storage


• NaOH-H₂O pair studied for domestic heating applications.

WARWICK

THE UNIVERSITY OF WARWICK

- Absorption performance is evaluated over spiral finned heat exchangers.
- The setup is being scaled to provide a discharge power of up to 8kW.

WARWICK THE UNIVERSITY OF WARWICK

Results and conclusions

Parametric study of heat exchanger with fin height 3mm

Impact of varying cooling water inlet temperature	;
---	---

Case	Solution flow	Cooling water inlet	Heating	Solution outlet
	rate (g/min)	temperature(°C)	power	concentration
1	5.8	21.3	150.7	30%
2	7.5	25.4	99.0	37%
3	6.5	29.6	69.9	39%

Impact of varying solution flow rate

Case	Solution flow rate (g/min)	Heating power	Solution outlet concentration	Average solution temperature (°C)
	5.7	80.7	36%	34.4
	7.5	99.0	37%	36.4
2	9	61.1	42%	32.3

• A temperature lift of 10°C is seen to be optimal.

A storage density of 1900-2250
 MJ/m³ is evaluated.

Parametric study of heat exchanger with fin height 3mm (contd.)

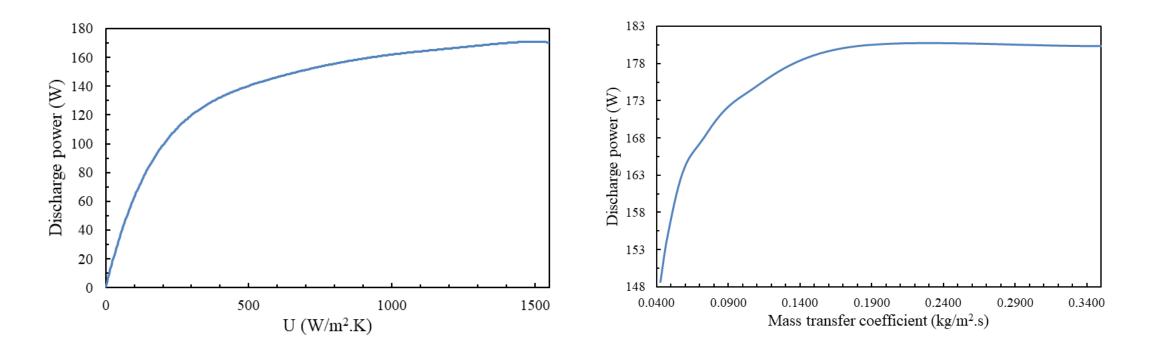
Impact of varying evaporator temperature

Evaporator	Solution flow	Cooling water	Heating	Solution outlet
temperature	rate (g/min)	inlet	power	concentration
(°C)		temperature(°	(W)	
		C)		
20	6.2	27.9	141.4	31%
15.5	6.8	25.0	151.8	31%
11	6.0	21.3	150.7	31%
7	5.7	17.8	124.4	32%

Performance drops for
evaporator temperature
lower than 10 deg.C.

 Lower absorption uptake limit results in lower kinetics.

Heat and mass transfer analysis


$$\dot{m}_{htf} \times 4.18 \times \left(T_{htf,out} - T_{htf,in}\right) = UA \frac{\left(T_{htf,out} - T_{s,in}\right) - \left(T_{htf,in} - T_{s,out}\right)}{\log\left(\frac{\left(T_{htf,out} - T_{s,in}\right)}{\left(T_{htf,in} - T_{s,out}\right)}\right)} = \dot{m}_s(h_{in} + \left(\frac{X_{in}}{X_{out}} - 1\right)h_v - \frac{X_{in}}{X_{out}}h_{out})$$

$$\dot{m}_{s}\left(\frac{X_{in}}{X_{out}}-1\right) = kA\frac{\left(X_{in}-X_{eq,in}\right)+\left(X_{out}-X_{eq,out}\right)}{2}$$

A lumped parameter analysis is considered for studying the impact of heat and mass transfer coefficients

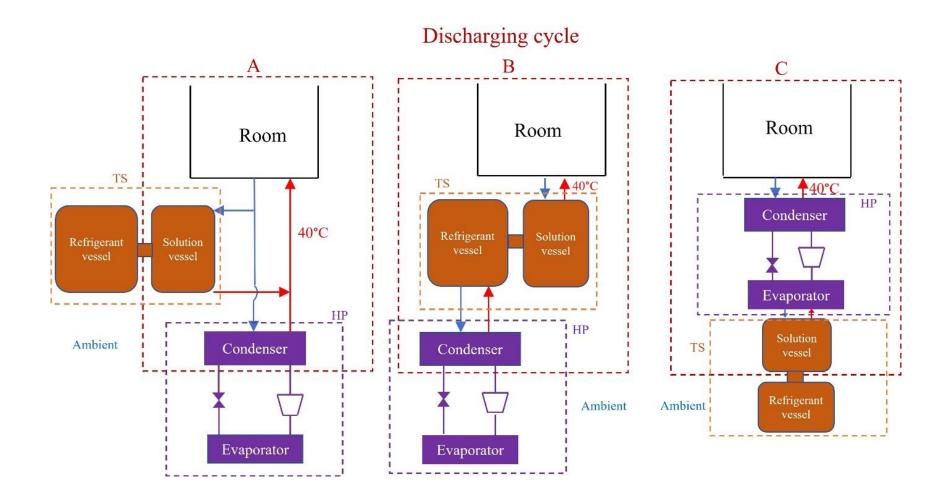
Impact of heat and mass transfer coefficients

The performance is limited by mass transfer resistance of the solution film

Performance analysis of heat exchanger with fin height 6.35mm

Performance with preheating section

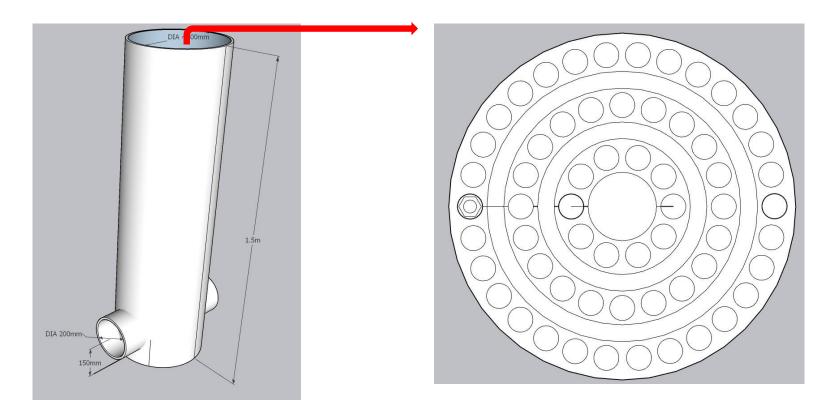
Evaporator temperature (°C)	Solution flow rate (g/min)	Cooling water inlet temperature (°C)	Discharge power (W)	Solution outlet concentration
20	6.7	28.0	127.5	36%
15.9	6.5	25.1	120.3	36%
10.5	6.0	20.5	123.6	35%


Performance without preheating section

Evaporator	Solution	Cooling water	Discharge	Solution outlet
temperature	flow rate	inlet temperature	power (W)	concentration
(°C)	(g/min)	(°C)		
20	8	28.0	138.6	36%

Preheating section reduces
 discharge power with no
 reduction in energy density.

 Tube fins without preheating section are considered for scaling up the absorption heat exchanger.


Way further

1-Octanol	Solution	Cooling water	Discharge	Solution outlet
concentration	flow rate	inlet temperature	power (W)	concentration
(ppm)	(g/min)	(°C)		
100	5.6	28.0	115.3	35%
300	6.5	25.1	107.3	36%
500	6.0	20.5	88.2	37%

Impact analysis with 1-Octanol surfactant

- Octanol is seen to reduce the absorption capability of NaOH and not recommended.
- Further work includes the performance analysis with 2-Ethyl-1-Hexanol surfactant.
- Performance studies are to be carried on a scaled rig of around 8kW discharge power capacity with 60 concentric tubular finned heat exchangers.

60 finned tubes are arranged in 3 rows with gaps for vapor diffusion